National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Detection of luminescent nanoparticles in plants by laser spectroscopy
Střítežská, Sára ; Novotný,, Karel (referee) ; Modlitbová, Pavlína (advisor)
This diploma thesis deals with evaluation of toxicity and bioaccumulation of photon-upconversion nanoparticles (UCNPs) in model plant maize (Zea mays). Lanthanide-doped UCNPs with different composition and size were tested in three different concentrations in this work. The exposure took place for 168 hours. Toxicity was assessed based on four macroscopic toxicological endpoints (mortality, the length of belowground part of the plants, the length of aboveground part of the plants and whole plants length). Spatial distribution of elements yttrium, ytterbium, erbium and gadolinium in model plants was determined using laser induced breakdown spectroscopy with spatial resolution of 100 m and 26 m. Distribution of UCNPs in plants was further studied with photon-upconversion microscanning with spatial resolution of 40 m. Stability of UCNPs during and after the plant exposure was also discussed in this thesis.
Detection of luminescent nanoparticles in plants by laser spectroscopy
Střítežská, Sára ; Novotný,, Karel (referee) ; Modlitbová, Pavlína (advisor)
This diploma thesis deals with evaluation of toxicity and bioaccumulation of photon-upconversion nanoparticles (UCNPs) in model plant maize (Zea mays). Lanthanide-doped UCNPs with different composition and size were tested in three different concentrations in this work. The exposure took place for 168 hours. Toxicity was assessed based on four macroscopic toxicological endpoints (mortality, the length of belowground part of the plants, the length of aboveground part of the plants and whole plants length). Spatial distribution of elements yttrium, ytterbium, erbium and gadolinium in model plants was determined using laser induced breakdown spectroscopy with spatial resolution of 100 m and 26 m. Distribution of UCNPs in plants was further studied with photon-upconversion microscanning with spatial resolution of 40 m. Stability of UCNPs during and after the plant exposure was also discussed in this thesis.
Photon-upconversion scanner for multiplexed imaging
Hlaváček, Antonín ; Křivánková, Jana ; Foret, František
In analytical chemistry, multiplexed assays facilitate parallel detection of analytes. The multiplexing reduces the consumption of sample, reagents, and other resources and can be applied for medical diagnostics, the studies of biomolecule interactions, single-cell and singlemolecule assays, environmental monitoring, pathogen detection, multiparameter chemical and biological assays and screening of chemical libraries.
Droplet-based microfluidic chip with passive mixer for analysis with photon-upconversion nanoparticles
Křivánková, Jana ; Přikryl, Jan ; Hlaváček, Antonín
Mixing of the fluids in microfluidic chips is important especially in applications, where droplet contents need to be rapidly homogenized. Here, a passive method for mixing in polydimethylsiloxane (PDMS) microchannels is presented. Droplet homogenization was firstly tested with organic stains and subsequently applied for mixing water dispersions of photon-upconversion nanoparticles (UCNPs).\n

Interested in being notified about new results for this query?
Subscribe to the RSS feed.